SplicingTypesAnno: Annotating and quantifying alternative splicing events for RNA-Seq data

نویسندگان

  • Xiaoyong Sun
  • Fenghua Zuo
  • Yuanbin Ru
  • Jiqiang Guo
  • Xiaoyan Yan
  • Gaurav Sablok
چکیده

Alternative splicing plays a key role in the regulation of the central dogma. Four major types of alternative splicing have been classified as intron retention, exon skipping, alternative 5 splice sites or alternative donor sites, and alternative 3 splice sites or alternative acceptor sites. A few algorithms have been developed to detect splice junctions from RNA-Seq reads. However, there are few tools targeting at the major alternative splicing types at the exon/intron level. This type of analysis may reveal subtle, yet important events of alternative splicing, and thus help gain deeper understanding of the mechanism of alternative splicing. This paper describes a user-friendly R package, extracting, annotating and analyzing alternative splicing types for sequence alignment files from RNA-Seq. SplicingTypesAnno can: (1) provide annotation for major alternative splicing at exon/intron level. By comparing the annotation from GTF/GFF file, it identifies the novel alternative splicing sites; (2) offer a convenient two-level analysis: genome-scale annotation for users with high performance computing environment, and gene-scale annotation for users with personal computers; (3) generate a user-friendly web report and additional BED files for IGV visualization. SplicingTypesAnno is a user-friendly R package for extracting, annotating and analyzing alternative splicing types at exon/intron level for sequence alignment files from RNA-Seq. It is publically available at https://sourceforge.net/projects/splicingtypes/files/ or http://genome.sdau.edu.cn/research/software/SplicingTypesAnno.html.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data Sheet: Sequencing

RNA sequencing (RNA-Seq) is a powerful method for discovering, annotating, and quantifying RNA transcripts that is currently revolutionizing the field of agrigenomics.1–9 RNA-Seq does not require speciesor transcript-specific probes, enabling precise quantification of both known and novel transcripts without prior knowledge. Beyond the measurement of gene expression changes, RNA-Seq can be used...

متن کامل

PrimerSeq: Design and Visualization of RT-PCR Primers for Alternative Splicing Using RNA-seq Data

The vast majority of multi-exon genes in higher eukaryotes are alternatively spliced and changes in alternative splicing (AS) can impact gene function or cause disease. High-throughput RNA sequencing (RNA-seq) has become a powerful technology for transcriptome-wide analysis of AS, but RT-PCR still remains the gold-standard approach for quantifying and validating exon splicing levels. We have de...

متن کامل

SpliceTrap: a method to quantify alternative splicing under single cellular conditions

MOTIVATION Alternative splicing (AS) is a pre-mRNA maturation process leading to the expression of multiple mRNA variants from the same primary transcript. More than 90% of human genes are expressed via AS. Therefore, quantifying the inclusion level of every exon is crucial for generating accurate transcriptomic maps and studying the regulation of AS. RESULTS Here we introduce SpliceTrap, a m...

متن کامل

MATS: a Bayesian framework for flexible detection of differential alternative splicing from RNA-Seq data

Ultra-deep RNA sequencing has become a powerful approach for genome-wide analysis of pre-mRNA alternative splicing. We develop MATS (multivariate analysis of transcript splicing), a bayesian statistical framework for flexible hypothesis testing of differential alternative splicing patterns on RNA-Seq data. MATS uses a multivariate uniform prior to model the between-sample correlation in exon sp...

متن کامل

Comparison of RNA-seq and Microarray Platforms for Splice Event Detection using a Cross-Platform Algorithm

RNA-seq is a reference technology for determining alternative splicing at genome-wide level. Exon arrays remain widely used for the analysis of gene expression, but show poor validation rate with regard to splicing events. Commercial arrays that include probes within exon junctions have been developed in order to overcome this problem. We compare the performance of RNA-seq (Illumina HiSeq) and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer methods and programs in biomedicine

دوره 119 1  شماره 

صفحات  -

تاریخ انتشار 2015